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Abstract—This paper deals with the accurate and efficient
modal analysis of arbitrarily shaped waveguides whose cross
section is defined by a combination of straight, circular, and/or
elliptical arcs. A novel technique for considering the pres
ence of circular and/or elliptical segments within the frame of
the well-known boundary integral-resonant mode expansion
(BI-RME) method is proposed. This new extended BI-RME
method will allow a more accurate solution of a wider number of
hollow conducting waveguides with arbitrary profiles, which are
usually present in most modern passive waveguide components.
To show the advantages of this new extended technique, the
modal chart of canonical (circular and dliptical) waveguides, as
well as of irises with great practical interest (i.e., cross-shaped
irises with rounded corners) has been first successfully solved.
Next, a computer-aided-design software package based on such
a novel modal analysis tool has first been validated with the
accurate analysis of a referenced complex dual-mode filter, and
then applied to the complete design of a novel twist component for
K -band application based on circular and elliptical waveguides.
A prototype of this novel device has been manufactured and
measured for verification purposes.

Index Terms—Green functions, integral equations, waveguide
components, waveguides.

I. INTRODUCTION

VER THE LAST two decades, an increasing number

of passive waveguide devices have been made of wave-
guideswith an arbitrary cross section defined by linear, circular,
and/or €lliptical arcs. For instance, ridged rectangular [1] and
ridged circular [2] waveguides, aswell as cross-shaped irises[3]
are frequently found in dual-mode empty or dielectric-loaded
resonator filters. Multiridged rectangular waveguides have
been aso employed as tuning elements in reentrant coaxial
filters[4], aswell as key elementsin doubly corrugated chokes
[5]. Recently, and due to the mechanization effects of most
common manufacturing techniques of waveguide components,
the presence of rounded corners in rectangular waveguides has
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been under investigation in both guided [6] and radiating appli-
cations [7]. Another example of great practical interest is the
elliptical waveguide, which has found increasing application in
many passive microwave components, such as dual-mode [8]
and triple-mode [9] filters, circular waveguide polarizers [10],
radiators[11], resonators [12], and corrugated horns [13].

Therefore, the electromagnetic-wave propagation in hollow
conducting waveguides of arbitrary cross section has become a
problem of considerable practical interest, and many different
approaches dealing with the calculation of the full modal
spectrum of such waveguides have been published in the
technical literature. A very early contribution can be found in
[14], where a conformal transformation technique is proposed
for the study of rectangular waveguides with trapezoidal
and semicircular ridges. Over the following years, several
techniques were introduced in order to cope with the efficient
modal computation of particular arbitrarily shaped waveguides
such as nonsymmetric uniform waveguides or triangular- and
star-shaped guides. An interesting review of such techniques
can be found in [15] and [16].

In the decade of the 1980s, several new techniques for
solving the modal problem under consideration were proposed.
They can be grouped into two main categories: the first one
based upon the solution of integral equations through different
methods (see, for instance, [17]-{19]) and the second one
consisting of meshing techniques such as the transmission-line
modeling method [20] and the finite-element method [21]. Even
though the first group of techniques has recently been revisited
with the proposition of novel methods, e.g., the generalized
spectral-domain method [22] and boundary integral-equation
method [23], they lead to the solution of small-size nonalge-
braic eigenvalue problems, which, in some cases, do require
time-consuming procedures for searching the required cutoff
frequencies. On the other hand, the meshing methods lead to
either large-size standard eigenvalue matrix problems or mul-
tistep iterative strategies, thus demanding high computational
efforts and/or large computer memory resources.

To overcome these drawbacks, anew algorithm also based on
the solution of an integral equation was originally proposed in
[24], i.e., the well known boundary integral-resonant mode ex-
pansion (BI-RME) method. The main advantage of this new in-
tegral equation method isthat it leadsto small-size linear matrix
eigenvalue problems, which can be accurately solved in rather
short CPU times. Recently, the BI-RME method has been re-
visited in order to also provide the modal coupling coefficients
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of step discontinuities involving arbitrarily shaped waveguides
(see[25] and [26]), which has eased its practical integrationinto
modern computer-aided design (CAD) tools[27]. Nevertheless,
despite these recent efforts devoted to improving the BI-RME
method, al practical implementations of such a technique use
only straight segmentsfor describing the arbitrarily shaped con-
tours, even though they are composed of circular and/or €ellip-
tical arcs. Thissimple approach, which usually requiresahigher
number of straight segmentsto definethe arbitrary profiles, does
not provide enough accurate results for some restrictive prac-
tical applications.

Within the context of this high demanding scenario, this
paper is essentially aimed at describing a rigorous method that
alows the accurate consideration of linear, circular, and/or
eliptical arcs by the BI-RME formulation, as well as the
appropriate connection of such types of segments. To fully
validate the new theory proposed in this paper, two simple
canonical examples have first been considered. One of them is
acircular waveguide and the other is an elliptical guide, whose
modal charts are either analytically or numerically well known.
After this successful preliminary verification, the new theory
proposed has been applied to the complete modal analysis of a
commonly used iris, i.e., the cross-shaped iris, but considering
rounded corners due to mechanization effects. Next, the new
modal analysis tool developed has been integrated into a CAD
software package of complex passive waveguide devices.
Such CAD package has been first verified with the accurate
analysis of a dual-mode filter involving circular and elliptical
waveguides. Finally, making use of the validated CAD tool,
a novel topology for a K-band 90°-twist component based
on circular and elliptical waveguides has been proposed. The
simulated results of this new component have been successfully
compared with measurements of a manufactured prototype.
The computational efficiency of the novel modal analysis tool,
as well as of the CAD software package based on such a toal,
has been revealed as being very good.

Il. THEORY

The structure under investigation is the arbitrarily shaped
waveguide shown in Fig. 1, whose cross section S can be
defined by a combination of linear, circular, and/or elliptical
arcs. As can be seen in this figure, the arbitrary cross section
is enclosed within a standard rectangular waveguide €2, and its
arbitrary contour o is defined by the tangent vector t and the
suitable abscisa ! taken on the contour line.

In order to obtain the modal chart of such arbitrary wave-
guides, the aready cited BI-RME method, first described
in [24], is proposed. The practical implementations of this
classical technique, as well as of further revisited versions of
the method (see, for instance, [27]), dways have the arbitrary
profile o segmented into smaller straight arcs. In this section,
we will only present the new theoretical aspects related to
the BI-RME method implementation that are needed to also
consider circular and/or elliptical arcs when segmenting the
arbitrarily shaped contours. A detailed explanation of the
generic BI-RME method formulation, and also of its classical
implementation, can be found in [24] and [27].
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Fig.1. Waveguidewith anarbitrary crosssection .S enclosed within astandard
rectangular waveguide €.

A practical procedure for efficiently solving the connection
of the two new kinds of arcsintroduced (i.e., the circular and el-
liptical ones) with the standard straight segments used up to now
in the classical BI-RME implementation will also be outlined.

Once the modal chart of an arbitrarily shaped waveguide in-
cluding straight, circular, and/or elliptical arcsis solved, the ef-
ficient and accurate procedures described in [25] and [26] can
aso befollowed in order to easily compute the modal coupling
coefficients of such modes with those of the standard rectan-
gular waveguide enclosing the arbitrary profile (see Fig. 1).

A. Extension of the TM Case

When computing the TM modes of an arbitrarily shaped
waveguide using the BI-RME method originally described in
[24], the most crucial task is related to the accurate evaluation
of the following matrix elements:

Ly = [ [ wals. i ®

where the functions «; and «; are the basis and testing func-
tionsrelated to the implementation of the well-known method of
moments (MoM). Typically [24], such functions are piece-wise
parabolic splines defined in two or three segments of the arbi-
trary contour, which, in our case, can be straight, circular, and/or
elliptical arcs. In each of these segments, these functions have
the following simple expression:

uw(l) = al®> + bl + ¢ 2

where the coefficients a, b, and ¢ are explicitly reported in [27]
for the cases of straight and circular segments. If an elliptical
arc isinvolved, these coefficients must be computed following
the procedure described at the end of this section.

In (1), s and s’ are, respectively, the source and field vectors
addressing points of the arbitrary contour ¢, which can be de-
fined as o = s(l), and g is the scalar two-dimensional Green
function for the Poisson equation [24].

When ¢ # j, the double integral defined in (1) can be per-
formed numericaly in a very easy way, for instance, using a
Gauss quadrature rule. However, such an approach cannot be
followed with the diagonal elements of the L’ matrix (i.e., when
i = j) since g issingular whens = &',
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A rapidly convergent expression for such a Green function
can be found in [28], which has the following aspect:
1 o T10T01

1= Y miE ®

where
TP =1 — 2¢"* cos % (y — (=)%Y + ™ (4a)
Tmp = — & — (—1)P2’ 4 2am| % (4b)

It should be noticed that the singularity of the ¢ functionisdue
to the In 73° term, which tends to infinity when the field point
s(z, y) approaches the source point s'(z’,%’). Under such cir-
cumstances, the In 75 behaves like the singular function In R,
where 12 denotes the Cartesian distance between the af oremen-
tioned field and source points.

In order to treat the singular behavior of the ¢ function,
the singular term of such a function aready detected must
first be isolated. Next, to simplify the expression of this
problematic term, a well-known technique for solving generic
integral equations with singularities will be followed [29].
This classical technique, which essentially consists of adding
and subtracting a canonica function with the same kind of
singularity behavior to the singular term, has aready been
successfully used together with the MoM approach [30].

Therefore, making use of such aclassical technique, our orig-
inal scalar two-dimensional Green function (g) can be split as
follows:

9=9gr+ Grs + s 5)
with
1 o, TR 1 TIOT:
9r =7 Z In —557t + e (6a)
dr —~  TOT] 4 15
(m#0)
1. 10
rs = — o 6b
g = (6b)
1
gs = — — InR% (6¢)
47

In (5) and (6), the subscript » denotes the completely regular
contribution of the scalar Green function, the compound sub-
script rs indicates that the singular term In 739 has been regu-
larized using the well-known technique just previously outlined,
and finally, the subscript s refersto theisolated singular term of
the g function, whichisexpressed asacanonical function whose
singularity can be analyticaly treated.

With regard to the regularized term g,., of the scalar Green
function, its regular value when the field and source points are
very close to each other can be easily obtained by expanding
the 79° function as a Taylor series and then taking the corre-
sponding limit. Proceeding in such away, it is finally obtained
that

. 700 2\ 2
}E?’ _ o2 ; —oN2 <Z> ' 0
n(x—a) +y-y)

y—

Theonly contribution to the L., matrix elementsthat remains
to be treated is then the one related to the singular term (g, ) of
the Green function. With the aim of making such double-integral
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Fig. 2. Arbitrarily oriented circular arc with radius r and length r A¢.

contribution independent of the kind of arcsunder consideration
(straight, circular, and elliptical ones), such integration will be
always performed in the same interval [—0.5,0.5] of a dummy
parameter ¢ to be suitably defined in each case. In fact, the only
integral to be solved analytically will be the inner one, whereas
the remaining outer one will finally be computed numerically
following a simple Gauss quadrature rule.

Next, we offer further mathematical details regarding the
practical application of the above-described technique to the
particular cases of circular and elliptical arcs.

1) Circular Arcs. A circular arc (see Fig. 2) can be easily
described in terms of a ¢-parameter running in the interval
[-0.5,0.5] as follows:

x =x0 + rcosp(t)

Y =yo + rsine(t) (8)

where
e(t) =1 + Ap(t 4+ 0.5) (99)
Ap =@2 — 1 (9b)

and r isthe constant radius of the circular arc.

Inserting these previous equations within the definition of the
singular term (g ) of the Green function in (6), such aterm can
now be easily divided into the following two components:

s = gsr + Gss (10)
where
1 2
Gsr = — — In 7R 3 (lla)
A Ap*(t—t)
1
Gos = — —1n [A<p2(t _ t’ﬂ . (11b)
A7

Now, g,, can also be treated as aregular function because
2
(12)

lim In = ln+?

s At —t)’
and, therefore, the contribution of such aterm to the L/, matrix
elements will be also computed numerically.

With regard to theinner singular integral of the L’, matrix el-
ementsrelated to theterm g, just outlined in (11), an analytical
solution is explicitly detailed in (38) of the Appendix .

2) Elliptical Arcs: In this case, an éliptical arc, shown in

Fig. 3, must bedescribed interms of a¢-parameter running inthe
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Fig. 3. Arbitrarily oriented elliptic arc defined by the angles 7, and - of an
ellipse with mgjor and minor semiaxes a and b.

interval [—0.5, 0.5]. First, theelliptic arcisdescribed in terms of

amore suitable local coordinate system (see Fig. 3) asfollows:
u =acosn(t)
v =bsinn(t) (13)
where
n(t) =n + An(t 4 0.5)
An=mn2—m. (14)

Next, the local coordinate system chosen before must be
related to the global Cartesian system defined by the xz and ¥
coordinates. To do so, the following relationship between both
coordinate systems must be considered:

T\ _ (%o (cosa —sina ) fu
v/ \ o sina cosa v/’

Introducing al these previous relations within the expression
of the singular term g, outlined in (6), such aterm can now be
easily divided again into the following two new components:

(15

s = gsr + Gss (16)
where now
RQ
= ——In—— 17a)
g I P A )2 (174)
_ 1 2 "2
goo=—1In [An (t—1) } : (17b)

The g, term can be considered again as a regular function
since, in this case,

RQ
lim In —
z—a! AUQ(t—t/)

y—y!

= In [a®sin® n(t)+b% cos® n(t)] (18)

and, therefore, the contribution of such aterm to the L, matrix
elements can also be performed numerically.

With regard to the inner singular integral of the L}, matrix
elements related to the term g, just presented above in (17), a
further refined treatment is needed in order to reach a kind of
singular integral like the one solved in (38).

Such further refined treatment is needed due to the fact that
the expressionsfor the length differentials present in L, matrix
elements, i.e., dl and dl’ in (1), do have more complicated ex-
pressions in terms of the dummy parameters ¢ and ¢’ than those
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obtained for the circular case. For instance, using the expres-
sions collected in (13) and (14), the length differential di for an
dliptical arc is defined as follows:

dl = aAny/1 — €2 cos® n(t)dt (29)
where ¢ isthe eccentricity of the ellipse where the elliptical arc
isintegrated.

If thisdefinition of thelength differential isconsidered within
the generic expression of the L’ matrix elements, the following
double integral is finally obtained:

0.5 0.5
Li=aar [ [ wtn@gto.s (¢t
—0.5-0.5
(20)
where v(¢) = /1 — e cos? n(t).

Now, we can make use of the decomposition of the scalar
Green function ¢ previousy proposed in this section. Pro-
ceeding in this way, the computation of (20) can be split into
the following two terms:

Li; = Li;, + Li;, (21)
where

0.5 0.5

L. =a"An’ wi()V(E) (G + Grs + g5 )us (¢ )y () dtdt’
—0.5-0.5

(229)
0.5 0.5

his =a" A1’ wi(£)Y(8)gss (t, 8 Yuy (8 )y(t ) dtdt’.

(22b)

In expressions (21) and (22), the subscript » means a regular
contribution to the L. matrix elements, which can, therefore,
be computed numerically. On the other hand, the subscript s
makes reference to the fact that the related integral is singular,
thus needing a special treatment.

For solving the singular integral L/, , a second subdi-
vision level is required, thus giving place to the following
decomposition:

-1

/
L; wsr

s

e (- 25)

+ L;

itss

(23)

(243)

Gss(t, ) () dtdt’ .

|
=)
ot

|
=)
o

(24b)

The second subscript of this new subdivision again gives a
clear explanation of the new terms generated. The first new
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term L, . has now turned into aregular one since lim; .+ (1 —
(v(@®) /(")) = 0, g5 has asingularity of a logarithmic kind,
and as iswell known, lim,_,z*Inz = 0 for any value of «
greater than zero. On the contrary, the second new term L/, __ is
still asingular contribution, but, in this case, theinner integral of
such aterm isidentical to the one derived for the circular case,
whose analytical solution can be found again in (38).
Itisinteresting to noticethat the new definitionsfor thelength
differentials dl and dl’ must also be introduced into (1) when
computing the L, matrix elements. However, in such case, no
singularity is arisen and, therefore, the double integration re-
quired to compute such matrix elements can be easily performed

in a numerical way.

B. Extension of the TE Case

For the TE case, the critical issues related to the application
of the original BI-RME formulation (see[24]) arerelated to the
accurate computation of the following matrix elements:

. el
O“ _ // aul(l)g(s7sl)aul (l )dldl/

ol al’ (25)

Ly = / / w; (D) - Gyo(s,s') - t () (Idldl!.  (26)

If the first expression of the last two is compared with the
definition of the I}, matrix elements presented in (1), it can be
easily noticed that both are very similar, and the only difference
is related to the presence of the piecewise parabolic functions
or their first derivatives. Therefore, the singularity problemsre-
lated to the evaluation of (25) with circular and elliptical seg-
ments can be solved in the same way proposed earlier for the
TM case. Note that, for the TE case, the coefficient a in (38)
should be set equal to zero.

With regard to the computation of the diagona elements of
the L. matrix, a new procedure for dealing with the new singu-
larities appearing must be developed since, in this case, such
singularities are due to the solenoidal dyadic Green function
G.,;. Thisdyadic function is composed of four components, i.e.,
Gstzzs Gstays Gstyr, ad Gy, Whose compact expressions
are explicitly detailed in [24].

The singularities introduced by the Gy, and Gy, com-
ponents are of the same kind (logarithmic one) considered for
the TM case. Therefore, the same procedure for the accurate
management of such singularities described earlier can now be
also followed. Nevertheless, it must be taken into account that
the presence of the unitary vectors t in (26) introduce addi-
tiona sine and cosine terms in the inner singular integrals to
be solved analytically. The explicit analytical solutions for this
new inner singular integrals are presented in (39) and (40).

In the TE case, an additional problem appears when com-
puting the diagonal elements of the L matrix, whichisrelated to
thefact that someterms of the four components of the solenoidal
dyadic Green function do have an unknown value when thefield
and source points approach each other. To determine these un-
known values, a Taylor-series expansion of each one of these
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terms must be performed, thus giving place to the following two
types of functions:
J— / 2
R 0 27)
(x—2) " +w-1v)
_ ol o
g (@ 9;)(2/ y)Q_ 29)
(x—2) " +w-1v)

- The @ function appears when the terms of the G,.. and
G styy COMponents are expanded into the Taylor series, whereas
the ¥ function comes from the Taylor-series expansion of the
selected terms of the G,.y and Gy COMponents. It is inter-
esting to remark that two such functionsare not singular, but dis-
continuous, which means that their limit values when the field
and source points are close enough depend on the kind of seg-
ment they belong to (in our case, astraight, circular, or elliptical
arc).

If thearcisastraight one, thelimitsof (27) and (28) are easily
calculated, thus giving place to the following values for the
and W functions:

lim ® = cos? 6

z—a’
vy’

1
lim, U = 3 sin(26)
y—y’

(29)
(30)

where 6 is the dope of the straight arc.
For acircular arc, the limit values of the ® and ¥ functions

are the following:
lim & = sin? [o(t)]

e
y—y’

11551; U= — %Sin [20(1)].

For an dliptica arc, the & and ¥ functions do have the fol-
lowing limit values:

(31

(32)

[acos asinn(t) + bsinacos 7(t)] ?

21%15 v a?sin’ n(t) 4 b2 cos? (t) )
= e e

where x(t) is defined as follows:
x(t) = a®sin® n(t) — b* cos® n(t). (35)

C. Solving the Connection of Sraight, Circular, and
Elliptical Arcs

A further step to be studied is the connection of the different
kinds of segments considered in this paper (i.e. rectangular, cir-
cular, and elliptical) for defining the contour o of the arbitrarily
shaped waveguides.

The connection of two straight segmentswith different orien-
tations, as well as the connection of one straight segment with
acircular one or of two circular segments, can be easily imple-
mented since the rel ationship between the length and arc values
isstraightforward for the circular case. The problem ariseswhen
an dliptical arc isto be connected with the two other kinds of
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arcs. Such difficulty is due to the fact that the length of an el-
liptical arcis not anaytically known and, of course, itsvalueis
not directly related to the elliptical arc An.

Aswas already explained earlier in this section, the unknown
current of the modal problem to be solved by the BI-RME
method is reconstructed using piecewise parabolic functions. In
[24], itis proposed that the support of such piecewise functions
is defined by two or three segments of the origina arbitrary
contour, and that the area of such functions over its entire
domain (the two or three segments considered) must be equal
to onein order to guarantee more stable numerical results.

Let us suppose, without any loss of generality, that one
segment of a piecewise parabolic function is an elliptical one,
whoselength (1) isusually fixed by the sesgmentation procedure
of the arbitrarily shaped contour. A typical value for such fixed
length is chosen to be equal to A./4, where A. is the cutoff
wavelength of the highest order mode of interest belonging to
the arbitrary waveguide [27]. For an dliptical segment, it is not
so simpleto define the elliptical arc with only such information
about the arc length.

To avoid this situation, the following approach has been
adopted. If the elliptical arc belongsto an ellipse of major semi-
axis a, we propose to choose avalue for the élliptical arc length
An egual to the quotient of the proposed fixed length I and «
(i.e, An = l/a). It must be noticed that this choice of the An
value will not provide areal length for the eliptical arc equa
to the wanted value [. Nevertheless, once the elliptical segment
is defined, the coefficient values of the two or three parabolic
functions defining the whole piecewise function are easily
determined following a standard normalization procedure (for
instance, the one described in [27]). Therea area of the whole
piecewise function must then be determined as follows:

/ wn(Ddl = / ulD(D)dl+ / P (D)dl+ / uP(D)dl

11513 i1 I

I =

(36)
where u,, means the total piecewise basis function to be built,
and ) arethe parabolic functions defined on each segment (in
this particular case, we have considered three segmentsto define
the support of the complete basis function). In our particular
example, the third integral in (36) corresponds to the elliptical
arc, and will have the following aspect:

0.5
/ug’)(l)dl = aArp / (ant?+bpt+c,)\/1—e2 cos? n(t)dt.
I3 —0.5

(37)

Once (36) issolved, we will see how the value obtained for 1
isnot equal to one dueto the fact that the length of thereal ellip-
tical arcbuiltisnot /, ashasalready been explained. Thesolution
is quite smple: the final coefficient values of al the parabolic
functions used to define the total piecewise basis function are
obtained by simply dividing the ones previously determined by
the I value just computed.

Finaly, it isinteresting to remark that proceeding in thisway
with the construction of the elliptical arcs, their lengths will be
different depending on the position of such segmentswithin the
elipse. In fact, if the elliptical arc is placed where the tangent
unitary vector to the ellipse has a higher variation, its length

2383

TABLE |
RELATIVE ERROR IN THE CUTOFF FREQUENCIES OF A CIRCULAR WAVEGUIDE
(oF DIAMETER 9.525 mm) CoMPUTED USING THE BI-RME METHOD WITH
ONLY STRAIGHT SEGMENTS AND WITH ONLY CIRCULAR ARCS

Mode Error BI-RME Error BI-RME
Type || (straight segments) | (circular arcs)
TMo, 0.160 % 0.002 %
TM11 0.206 % 0.009 %
TMz1 0.207 % 0.004 %
TMo2 0.320 % 0.011 %
TMa; 0.439 % 0.013 %
TMa2 0.585 % 0.015 %
TMa 0.284 % 0.021 %
TMz2 0.526 % 0.012 %
TEn —-—— 0.035 %
TE2; —-—— 0.054 %

will be smaller, thus giving way to afiner segmentation that will
provide more accurate results.

I1l. VALIDATION RESULTS

In this section, the new above-described theory is completely
verified with several examplesof great practical interest. There-
sults presented have been grouped into two main blocks: thefirst
one dealing with the modal analysis of arbitrarily shaped wave-
guides and the second one related to the analysis and design
of modern passive devices involving such kind of waveguides.
In all the example cases considered, the simulated results have
been successfully compared with either numerical and experi-
mental dataavailablein thetechnical literature or with own mea-
surements of manufactured prototypes.

In order to show the efficiency of the novel modal analysis
tool developed, aswell as of the CAD software packages based
onthistool, CPU times have been included in most of the exam-
ples considered. Such computational efforts have been aways
determined on a Pentium IV platform at 2.4 GHz with 1-GB
double date rate random access memory (DDRAM).

A. Modal Analysis of Arbitrarily Shaped Waveguides

To fully validate the new theory developed for circular arcs,
as well as its supposed improved accuracy, we have first per-
formed the modal analysis of a canonical waveguide, i.e., acir-
cular waveguide of diameter 9.525 mm, whose cutoff frequen-
cies are analytically known. To make use of the new theory,
such a circular waveguide has been defined as a tubular sheet
(see ¢ in Fig. 1) perturbing a standard square waveguide (€2 in
Fig. 1) of size 9.525 mm. In Table |, a comparison between
the relative errors of the first TM and TE cutoff frequencies
of the circular waveguide modes, computed using the classical
(using only straight segments) and the new extended (using, in
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TABLE I
CUTOFF WAVELENGTHS OF AN ELLIPTICAL WAVEGUIDE (¢ = 10.0 mm AND
e = 0.5) USING THE BI-RME METHOD WITH ELLIPTICAL ARCS. THE
REFERENCE VALUES ARE COLLECTED FROM [31]

Order | Mode Type A (cm) Ac (cm) Relative error
(TE/TM) ref. [31] | (elliptical arcs) (%)

1 TE 3.394477 3.394426 0.0015
5 TE 1.907950 1.907890 0.0030
10 TE 1.397907 1.397804 0.0073
20 TE 0.916070 0.915912 0.0170
30 ™ 0.775601 0.775505 0.0120
50 ™ 0.592145 0.592021 0.0200
70 TE 0.494025 0.493878 0.0290
90 ™ 0.434155 0.433990 0.0380
100 TE 0.416163 0.415935 0.0540

thiscase, only circular arcs) BI-RME technique, is presented. In
both cases, the circular contour has been divided into only ten
segments. As can be seen in Table |, an important accuracy im-
provement is obtai ned with the new theory proposed for circular
arcs.

The next canonical example considered has been an elip-
tical waveguide with mgjor semiaxis « = 10.0 mm and ec-
centricity ¢ = 0.5 since results for the cutoff frequencies of
such waveguides have been extensively reported in the liter-
ature. In order to apply the extended BI-RME technique pro-
posed in this paper, the ellipse under consideration has been
defined within a rectangular waveguide of dimensions 21 mm
x 18 mm, and has been segmented using 176 smaller elliptical
arcs. Using thistechnique, thefirst 181 modes of the considered
elliptical waveguide have been computed (100 TE modesand 81
TM solutions). Table Il successfully compares the cutoff wave-
lengths for the first 200 modal solutions with results from [31],
where a completely different approach for solving the modal
problem was proposed. The total CPU time required to solve
this example has been of 47 s, which is rather well compared
with the 167 s related to the method proposed in [31] and the
303 s (also reported in [31]) of a standard package for solving
the well-known Mathieu functions. These last two CPU times
have been obtained using an IBM RISC-6000 workstation.

Once the new theory proposed has been successfully vali-
dated, we considered afinal example of great practical interest,
i.e., the cross-shaped iris shown in Fig. 4. As already explained
in Section I, this coupling iris is commonly used in circular
waveguide dual-mode filters, which are widely used for space
applications. Furthermore, most of the modern low-cost fabri-
cation techniques of these irises, such as computer-controlled
milling, spark eroding, electro-forming, or die casting, usualy
introduce rounded corners, as shown in Fig. 4. The accurate
consideration of such amechanization effect by the future CAD
tools of dual-mode filters would extremely reduce the current
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Fig. 4. Cross-shaped iris with rounded corners of different radius
(R = 0,0.01,0.1,0.2,0.5and1.0 mm). The other dimensions are
as; =15.3mm, b =17.3 mm, w = 2 mm, and R; = 12.0 mm. To solve this
example, asquare box of a; = 25 mm has been used.

TABLE Il
FIRST CUTOFF WAVENUMBERS (mm~—") AND COUPLING COEFFICIENTS OF THE

CROSS-SHAPED RIS WITH RIGHT-ANGLE CORNERS (R2 = () mm) SHOWN IN
FIG. 4. THE RESULTS ARE COMPARED WITH THOSE PROVIDED BY [25]

TE] TE2 TE3

ke = 0.18762 ke = 0.21136 ke = 0.21305

Err =0.021% Err = 0.03% Err =0.01%

0.32821 (TE11c) | —0.21689 (TEz1,) | 0.31893 (TEi1s)

0.32817"

—0.21687"

0.31892°

—0.37204(TM11,)

—0.37234"

~0.04555 (TEo1)

—0.04556"

0.36430 (TM11c)

0.36469"

—0.08293 (TE31.)

—0.08490"

—0.35096 (TM21.)

—0.35523"

0.06622 (TE31s)

0.06829"

0.16007 (TE21c)

0.16012~

0.01694 (TE415s)

0.01688"

0.20223 (TEi2,)

0.20216"

0.17295 (TMs1s)

0.17080"

~0.20719 (TE224)

—0.20726"

0.14331 (TM31c)

0.14110"

fabrication costs and development times of such complex
devices.

First, for verification purposes, we have considered a cross-
shaped iris with straight-angle corners since numerical results
for thissimpler case can befound in the technical literature[25].
The structure under study can be seen in Fig. 4, where R, has
been obviously chosen to be equal to 0 mm (right-angle cor-
ners), as = 15.3mm, b = 17.3 mm, and w = 2 mm. To apply
the BI-RME method, a square surrounding box (a; = 25 mm)
has been chosen. Table |11 reports the cutoff wavenumbers (in
mm~!) provided by our BI-RME implementation for the first
three TE modes of the described iris, as well as the relative
error (Frr) between such results and those collected in [25].
Table |1l aso provides the values of the coupling coefficients
among the computed modes of the cited cross-shaped iris and
the first TE and TM modes of a standard circular waveguide
of radius R; = 12.0 mm, also shown in Fig. 4. Our results
are those next to the parenthesis enclosing the standard circular
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TABLE IV
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CuTOFF WAVENUMBERS OF THE THREE LOWEST ORDER MODES OF THE CROSS-SHAPED IRIS WITH ROUNDED CORNERS
(R; = 0.01,0.1,0.2,0.5, AND 1.0 mm) SHOWN IN FIG. 4

Mode ke (mm™?1) ke (mm™1) ke (mm™1) ke (mm™1) ke (mm™1)
(TE/TM) [ R2 =001 mm | R =0.1mm | R, =02mm | R =05 mm | R; =1.0 mm
TE, 0.18762 0.18766 0.18781 0.18882 0.19253
TE; 0.21136 0.21142 0.21160 0.21289 0.21761
TE; 0.21305 0.21311 0.21330 0.21461 0.21940
waveguide modes considered, whereasthose marked with an as- Wav?;ﬁf(;‘ct
terisk have been obtained from [25]. As can be observed, an ex- Output Iris >4+
cellent agreement between both results is obtained. Second Cavity > ==t
Next, the new theory developed in Section Il has been used Coupling Tris "
to solve the moda chart of the previous cross-shaped First Cavitye- .y = 7131
.. R R X ! irst Cavity---»
iris, but now considering different curvature radius
(R2 = 0.01,0.1,0.2,0.5 and 1.0 mm) for the rounded corners Input Iris
shown in Fig. 4. The evolution of the cutoff wavenumbers (in Tnput-.., =
mm~—1) for the first three TE modes of the perturbed iris, in Waveguide

terms of the different radius values chosen for the rounded
corners, isoffered in Table V. Ascan be seen in thistable, even
for small values of the rounded cornersradius (R, = 1.0 mm),
the cutoff wavenumbers of the very low-order modes begin to
be considerably modified (relative differences approximately
3%). Therefore, the inclusion of these effects in the modern
CAD toolsisreveaded as being rather necessary, especially for
machined components to operate in the higher microwave and
millimeter-wave bands. For the example we have just studied,
the arbitrarily shaped contour has been divided into 164 arcs
(straight and circular ones), and the first 16 modes (15 TE and
1 TM) of the strongly perturbed iris have been computed, thus
requiring atotal CPU effort of only 30 s.

B. Analysis and Design of Complex Passive Waveguide
Devices

Once the novel theory proposed has been previously
validated with several benchmark tests, its direct application
to the analysis and design of modern complex passive wave-
guide devices is faced. For that purpose, we have integrated
the new BI-RME extended technique proposed in this paper
within a CAD software package based on the integral-equa-
tion method fully described in [32]. Asindicated in [32], this
efficient full-wave analysis method requires the knowledge
of the modal chart related to al the waveguides included in
the devices under consideration. In order to solve the modal
chart of the arbitrarily shaped waveguides that can be present
in modern passive waveguide devices, we have made use of
the efficient and accurate modal analysis tool developed in
the context of this study.

Before using the new CAD software package developed for
the design of novel components, we havetested itsaccuracy and
efficiency with a complex passive waveguide device involving
circular and elliptical waveguides, which has been recently
reported in the literature. This complex device is a four-pole
dual-mode filter successfully designed in [8], which is of great

Fig. 5. Four-pole dual-mode filter with elliptical waveguide resonators in
standard WR-75 rectangular waveguides (¢ = 19.050 mm, b = 9.525 mm).
The dimensions are: input iris (9.91 mm x 2.0 mm) of length 2.0 mm, first
eliptical cavity (major semiaxis of 11.0 mm, minor semiaxis of 10.50 mm, and
rotation angle of 81.46°) of length 16.62 mm, coupling central iris (3.5 mm x
4.98 mm) of length 1.0 mm, second elliptical cavity (major semiaxis of
11.0 mm, minor semiaxis of 10.50 mm, and rotation angle of 98.54°) of length
16.62 mm, and output iris (9.91 mm x 2.0 mm) of length 2.0 mm.
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Fig. 6. Magnitude of thereflection (511 ) and transmission (.S21 ) coefficients
of the four-pole dual-mode filter with elliptical cavities shown in Fig. 5. The
authors' results are denoted by the solid line. Crosses denote the numerical
results collected from [8].

use for narrow-band applications. As can be seenin Fig. 5, this
original structureis composed of two elliptical cavities coupled
through a rectangular iris, which alows the avoidance of the
typical presence of tuning and coupling elements in these types
of devices. The geometric parameters of this structure can also
be found in Fig. 5. The simulated reflection and transmission
coefficients of this compact device are compared in Fig. 6
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@

(b)

Fig. 7. Photographs of the manufactured 90° twist component prototype. (a) Complete view of the twist manufactured in standard WR-34 rectangul ar waveguides
(¢ = 8.636 mm, b = 4.318 mm). (b) General view of all the waveguide pieces that integrate the component. (c) More detailed view of the internal pieces of
the device, i.e., the two square waveguides of size 8.636 mm and length 1.80 mm, and a central piece with two circular waveguides of radius 6.10 mm and length
1.60 mm and an inner elliptical iris (major semiaxis of 6.0 mm, minor semiaxis of 3.90 mm and rotation angle of 45.0°) of length 0.30 mm.

with the numerical results provided by [8]. A very good
agreement between both results can be observed, even though
a dight difference is noticed in the lower rejected frequency
band. However, the experimental results of a manufactured
prototype in such a low-frequency band, also reported in [8],
fit better with our simulated results. To reach our convergent
results, seven accessible modes, 20 basis functions, and 400
kernel terms in the integral equations were required. Due to
the great complexity of this device, the complete simulation
of its electrical response has taken a CPU effort of 7.2 s per
frequency point.

Finally, making use of the CAD software package produced,
we have designed anew 90° twist component for X -band appli-
cations. Up to now, 90° twist components have been designed
using L-shaped rectangul ar waveguides (see, for instance, [33]).
Here, we propose an alternative compact geometry for such
components based on a soft rotation of the £-field through suc-
cessive sguare, circular, and elliptical waveguides. A prototype
of such adevice, which isintended to operate at 26.3 GHz with
awide bandwidth of approximately 2 GHz, has been designed
and manufactured. Photographs of this prototype, as well as of
their integrating pieces, are displayed in Fig. 7, where the geo-
metric dimensions of all such piecesarealso collected. Thesim-
ulated scattering parameters of this novel two-port device are
shown in Fig. 8, where they are successfully compared with au-
thors' measurements. During the design procedure of the twist

L
=

|
[\
<

&
S

reflection/transmission (dB)

—40 i
theory
+ measurements
_50 1 1 T
22 24 26 28 30

frequency (GHz)

Fig. 8. Magnitude of the reflection (S1;) and transmission (S21) coefficients
of the 90-twist component for & -band applications shown in Fig. 7. Solid line
denotes the authors’ results. Crosses denoted the authors' measurements.

component, convergent simulation results were obtained using
20 accessible modes, 50 basis functions, and 400 kernel terms
in the integral eguations. These simulating parameters only in-
volved atotal computational effort of 0.54 sper frequency point,
which is appropriate for design purposes.
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IV. CONCLUSIONS

Arbitrarily shaped waveguides, composed of circular and el-
liptical arcs, areincreasingly used in modern passive waveguide
components. This paper has described an efficient way for the
very accurate consideration of such types of arcs within the
classical well-known BI-RME formulation, which, up to now,
has always been implemented considering only straight seg-
ments for defining the arbitrary profiles. The new theory pro-
posed has been extensively verified through several application
examples of great practical interest. First, the modal chart of
canonical circular and elliptical waveguides have been success-
fully computed. Next, the new extended method has been ap-
plied to the accurate modal analysisof widely used cross-shaped
irises, where completely new results considering the presence of
rounded corners due to undesirable mechanization effects have
also been offered. Finally, the new modal analysistechnique de-
veloped has been used together with a CAD software package
for advanced analysis and design purposes. After validating this
powerful CAD tool with the analysis of a complex waveguide
deviceinvolving circular and elliptical waveguides, anovel twist
component for K -band applications has been successfully de-
signed, manufactured, and measured. CPU times for the pre-
vious examples have been included to prove the good numerical
efficiency of the new modal analysis tool devel oped.

APPENDIX |
ANALYTICAL EXPRESSIONS FOR SINGULAR INTEGRALS

Here, the analytical expressions for all of the singular inte-
grals appearing in Section |1 are collected.

Theintegral of aparabolic spline multiplied by alogarithmic
singular term has the following analytical solution:

/ (a§’2+b£/+c) In [902(5—5/)2} dg’
_ {% [8a£° + 125 +24c6 +a—3(b—40)] In |26-+1]
— L (8¢ 12067 + 24c —a—3(b+4c)] In 2~ 1|

— r _i 2
+< +26> In l 5 l 1 (12a¢ +18b£+a+36c)} .
(38)

For the TE case and circular/elliptic arcs, the unitary tangent
vector to circular and elliptical arcsis pre- and post-multiplying
the solenoidal dyadic function G, thus giving rise to the fol-
lowing two singular integralswhose analytical solutionsarealso
offered:

(8" +8¢'+¢) sin(i€' +eo)n | (¢ €] de’

|
(SIS \
ol

= (al5+bI; +clj) cos(po) + (als +bI +clf )sin(ypo)
(39)
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[ (a7 43¢+ coslt +pluly* (€~
= (al5+bI{ +cl§)cos(po)— (als+bI; +clj ) sin(eg).
(39b)

Theintegrals I, I3, 15, 1§, I, and I3, which have been in-
troduced in the previous expressions, are defined as follows:

S
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In the expressions collected in (40), k =,¢ and
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where v is the Euler’s constant.
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